

Certificate of Analysis

BQ-GPEP-A2G2S2-10U

Cat. #: BQ-GPEP-A2G2S2-10	0U Batch: B67I-	O1 Size: 10 μg (3.49nmol)
Glycan Structure		
★ <u> </u>		
★ 0		$NeuAc_{\alpha \ 6}^{} - Gal_{\beta \ 4}^{} GlcNAc_{\beta \ 2}^{} Man_{\alpha \ 6}^{} Man_{\beta \ 4}^{} GlcNAc_{\beta \ 4}^{} GlcNAc_{\alpha \ 6}^{} Man_{\beta \ 4}^{} GlcNAc_{\beta \ 4}^{} GlcNAc_{\alpha \ 6}^{} Man_{\beta \ 4}^{} GlcNAc_{\beta \ 4}^{} GlcNAc_{\alpha \ 6}^{} Man_{\alpha \ $
Oxford Notation	CFG Notation	Text Notation

The glycopeptide is comprised of an A2G2S2 glycan attached to the asparagine amino acid of a peptide with the sequence Lysine-Valine-Alanine-Asparagine-Lysine-Threonine (KVANKT).

Glycan Purity determined as > 90% by UHPLC

Monoisotopic mass: 2865.1763 [M+H]+

Storage conditions: -20°C

BQ-GPEP-A2G2S2-10U Quantity Summary

The amount of GPEP-A2G2S2 glycopeptide to be dispensed per vial is determined by quantitative Nuclear Magnetic Resonance (qNMR) of the bulk glycopeptide stock. Once dispensed the **amount of glycopeptide per vial** is determined by monosaccharide analysis and sialic acid analysis. These determinations are detailed on the following pages, but a summary is provided below:

Amount of BQ-GPEP-A2G2S2-10U per vial

qNMR based determination: derived from glycopeptide bulk stock	=	10.00 µg ± 0.14 (3.49nmol)
Monosaccharide based determination (GlcN – HCI hydrolysis)	=	10.26 µg ± 0.29 (3.58nmol)
Sialic acid based determination	=	8.57 μg ± 0.20 (2.99nmol)

Quantitative Nuclear Magnetic Resonance (qNMR)

Figure 1. ¹H-NMR (500 MHz) of BQ-GPEP-A2G2S2-Bulk in D₂O (Batch Number: B677-01)

Sample	Concentration (mM) calculated using a certified quantitative standard.
BQ-GPEP-A2G2S2-Bulk	0.3111 ± 0.0044

Table 1. Concentration of BQ-GPEP-A2G2S2-Bulk calculated by qNMR

The concentration of the BQ-GPEP-A2G2S2 stock was calculated by qNMR by comparison to a certified quantitative standard (Table 1). This value was used to determine the amount of sample to be dispensed to obtain 10 µg of glycopeptide per vial.

Monosaccharide analysis of BQ-GPEP-A2G2S2-10U

Quantitative monosaccharide analysis using the Ludger LT-MONO-96 kit was performed on 5 replicates of BQ-GPEP-A2G2S2 using 6M hydrochloric acid hydrolysis (HCI) to release the N-acetylglucosamine (GlcNAc – hydrolysed to GlcN) constituents of the glycopeptide. The GlcN monosaccharides were labelled with 2-aminobenzoic acid and chromatography was performed on a HPLC equipped with a LudgerSep R2 monosaccharide analysis column (LS-R2-4.6x150).

Figure 2. LudgerSep-uR2 HPLC profile of 2-aminobenzoic acid (2-AA) labeled monosaccharides of HCl hydrolysed BQ-GPEP-A2G2S2-10U (Batch B67I-01).

The ManN monosaccharide is due to epimerisation of the GlcN monosaccharide during sample processing.

Calculation of the amount of GPEP-A2G2S2 using the GlcN value:

Quantity of GlcN per vial = 14.30 ± 0.41 nmol Quantity of BQ-GPEP-A2G2S2-10U per vial (determined by GlcN content) = $10.26 \pm 0.29\mu g$ (3.58 nmol)

Sialic acid analysis of BQ-GPEP-A2G2S2-10U

Quantitative sialic acid analysis was performed on 3 separate vials of BQ-GPEP-A2G2S2-10U using the LudgerTag[™] DMB sialic acid labelling kit (LT-KDMB-A1). The labelled sialic acid chromatography was performed on a HPLC equipped with a LudgerSep R1 column (LS-R1-4.6x150).

Figure 3. LudgerSep-uR2 HPLC profile of 1,2-diamino-4,5-methylenedioxybenzene.2HCl (DMB) labelled Neu5Ac of acetic acid hydrolysed BQ-GPEP-A2G2S2-10U (Batch B67I-01).

Quantity of NeuAc per vial = 5.98 ± 0.14 nmol

Quantity of BQ-GPEP-A2G2S2-10U per vial (determined by NeuAc content) = 8.57 ± 0.20 (2.99 nmol)

Glycopeptide Purity and Identity of BQ-GPEP-A2G2S2-10U

Figure 4. HILIC UHPLC profile of V-Tag (Ludger fluorophore tag) labelled BQ-GPEP-A2G2S2-10U (Batch B67I-01).

Figure 5. Positive ion ESI mass spectrum of BQ-GPEP-A2G2S2-10U (Batch B67I-01). KVANKT-A2G2S2 theoretical mass: 2865.74 Da