Introduction

The analysis of glycoprotein O-glycans is important in biological, clinical and biopharmaceutical research. Of the many techniques developed for release of O-glycans from glycoproteins, hydrazinolysis is one of the best for producing O-glycans with free reducing termini in high yield. However, in common with hydrazinolysis release conditions, a side reaction is observed and causes the loss of monosaccharides from the reducing terminus of the glycans (known as peeling).

Here we demonstrate that peeling can be greatly reduced when the sample is buffer exchanged prior to hydrazinolysis with solutions of either 0.1% trifluoroacetic acid (TFA) or low molarity (100, 50, 20 and 5 mM) ethylenediaminetetraacetic acid (EDTA).

Methods

- Bovine fetuin samples were dissolved in water or a range of solvents; 0.1M phosphate-buffered saline (PBS), 0.1% TFA; 0.1% HCl; 0.1% HSO₄; 0.1% HCOOH; 0.1% CH₃COOH and 100, 50, 20 and 5 mM EDTA. Bovine submaxillary gland mucin (BSM) samples were dissolved in water or a range of solvents; 0.1% TFA and 100 mM EDTA.

- Each solution of glycoprotein was transferred to a separate centrifugal filter device (1kDa MWCO membrane) and centrifuged at 4000 rpm for 10 to 12 minutes. The washing was then repeated a further five times with 5 mL of the appropriate washing solution for each sample. The remaining solution was transferred to pyrolyzed glass vials and dried down for 16 h by vacuum centrifugation.

- Fetuin and BSM-O-glycans were released by optimised manual hydrazinolysis and fluororensently labelled with 2-aminobenzamide (2-AB).

- A high resolution profile of the glycan pool was obtained by HILIC-HPLC using the LuderSep-N2 column. Waters GPC software with cubic spline fit was used to allocate GU values to peaks. 2-AB-labelled glucose homopolymer was used as a system suitability standard as well as an external calibration standard for GU allocation. In order to characterise unknown mucin O-glycan structures, information from published liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses was combined with the results of exoglycosidase sequencing.

Results

- The highest degree of peeling was observed for samples that were not cleaned up. Peeling had an average relative abundance of 58% (peak 2, Figure 1a, Table 1).

- The fetuin samples that were cleaned up in water or 0.1M PBS showed a lower degree of peeling, 36% and 45% respectively (peak 2, Figure 1b and c, Table 1).

- The most pronounced reduction of peeling was apparent in the samples that were washed with 0.1%TFA. These samples showed a significantly reduced amount of peeling, 19% (peak 2, Figure 2).

- Samples that were prepared using 0.1% HCl, 0.1% HSO₄, and 0.1% HCOOH showed similar amounts of peeling to the 0.1% TFA wash. However, those three different acid-treated samples also showed an increase in de-sialylation (Table 1).

- These were no differences in the relative abundance of peeling between the samples washed with 100, 50, 20 and 5 mM EDTA solutions and that the relative intensity of the degradation product (peeling) is similar to the 0.1% TFA cleanup (Figure 2, Table 1).

- To evaluate the effect of cations on the release of O-glycans and to demonstrate the role of EDTA washes in cation removal and suppression of peeling, fetuin was dissolved in 100 μL of a 100 mM CaCl₂ solution. Half of this fetuin solution was buffer exchanged by washing with 100 mM EDTA prior to hydrazinolysis and the other half was dried down without further manipulation.

- The amount of peeling is higher and the yield of O-glycans lower for the sample that had not been buffer exchanged after addition of CaCl₂ compared to the sample that had been buffer exchanged with 100 mM EDTA. (peak 2, Figure 4).

Conclusions

- The difference in the relative amounts of peeling products was apparent between the different sample clean up.

- The highest occurrence of peeling was observed for samples which were not cleaned up and for samples washed with water (peak 2, Figure 5b, Table 2).

- The samples that were not cleaned up or cleaned with water also showed a significantly reduced amount of other products.

References

- T. Patel, J. Bruce, A. Merry, C. Bigg, M. Wormald, A. Jaros, R. Pankh (1995) Use of hydrolysate to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins, Biochemistry 34: 679-685

Figure 1: Comparison of HPLC O-glycan profiles of bovine fetuin following buffer exchange prior to hydrazinolysis with a range of solutions: (a) no washing, (b) water wash, (c) 0.1 M PBS wash, (d) 100 mM EDTA wash. The O-glycans released by hydrazinolysis were 2-AB labelled and compared by HILIC-HPLC with fluorescence detection. Peak 2 is the peeled product.

Figure 2: Fetuin O-glycan profiles after hydrazinolysis and buffer exchange with EDTA solutions. Sample washing was performed using: (a) 100 mM EDTA, (b) 30 mM EDTA, (c) 20 mM EDTA, (d) 5 mM EDTA. Peak 2 is the peeled product.

Figure 3: Key for the glycan structure diagrams

Figure 4: Increased formation of peeling by the addition of calcium chloride may be predicted by EDTA washes. Fetuin was dissolved in 100 mM CaCl₂ and subjected to hydrazinolysis either directly (a) or after buffer exchange with 100 mM EDTA (b). Peak 2 is the peeled product.

Figure 5: Comparison of O-glycan profiles of BSM samples following buffer exchange with a range of solutions: (a) no washing, (b) water wash, (c) 0.1% TFA wash, (d) 100 mM EDTA wash. Peak 2 is the peeled product.

Table 1: Comparison of the average relative abundance, standard deviation and significance level (p-value) of O-glycans from fetuin samples that had been buffer exchanged prior to hydrazinolysis. The significance level was calculated comparing the control condition (Table 2) with various treatments. *p-values are given in bold for samples where changes were significant (p-value ≤ 0.05).

- Both the 0.1% TFA and 100 mM EDTA methods were also tested on bovine submaxillary gland mucin (BSM). Mucin samples were cleaned by centrifugal filtration with 0.1% TFA or 100 mM EDTA.

- Large differences in the relative amounts of peeling products was apparent between the different sample clean up.

- The highest occurrence of peeling was observed for samples which were not cleaned up and for samples washed with water (peak 2, Figure 5b, Table 2).

- The samples that were not cleaned up or cleaned with water also showed a significantly reduced amount of other products.