Studies on Salivary Glycosylation

Paulina A. Urbanowicz1,*, Radosław P. Kozaķ1 and Daryl L. Fernandes1

1* Luder Ltd, Calham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK, Email: paulina.urbanowicz@luder.com

Introduction

A large proportion of the human proteome consists of glycoproteins. Many studies have shown that the glycosylation patterns of these reflect the physiological status of the body and that these patterns change with pathological state. This phenomenon is currently being exploited with new clinical diagnostics based on changes in glycosylation patterns of specific serum glycoproteins[1-3]. Many of these blood glycoproteins are also detected in saliva which, in addition, contains several heavily glycosylated proteins secreted by the salivary glands[4]. Saliva could therefore possibly be used as an alternative to blood for diagnostics of both oral and systemic diseases.

Changes in saliva glycosylation pattern have been shown to correspond with, approximate age and blood group, as well as with various disease states (including cancer) of individuals[5-7]. However, protein glycosylation in saliva still remains underinvestigated. Indeed, despite many apparent advantages over blood (simplicity of collection and handling), several factors make saliva challenging for clinical diagnostics. Firstly, it is a very complex matrix containing proteins, hormones, DNA, natural and pathogenic microflora, food debris and other interfering substances. Secondly, it contains low concentrations of many possible disease biomarkers (the concentration of some of these biomarkers in saliva can be as low as 10-12 mol/L in serum)[8].

In our laboratory we have developed saliva collection and processing methods in order to analyze saliva glycoproteins, with the emphasis on O-linked glycosylation. Through these preliminary studies we have focused on overcoming some of the challenges of performing glycomics studies on human saliva. These include dealing with the complexity of saliva components and ways of purifying the salivary glycoproteins easily, keeping the glycosylation patterns intact. The combination of chromatographic methods combined with mass spectrometric analysis enabled us to determine the structures of O-linked glycans present on salivary proteins. These structures were confirmed with exoglycosidase digestions, providing a comprehensive view of total glycosylation.

Methods and Results

1. Saliva collection and processing

Saliva samples were collected from healthy participants in the morning, before breakfast and without any stimulation. In order to obtain full and comprehensive profiles of the saliva glycans, a few different approaches to saliva processing were tested: 1. Preservation of the saliva supernatant using protease inhibitor cocktail and buffer exchange with 0.1% TFA solution prior to glycan release; 2. Protein precipitation with acetonitrile with/without buffer exchange with 0.1% TFA solution; 3. Protein precipitation with ethanol with/without buffer exchange with 0.1% TFA solution; 4. Protein precipitation with acetone with buffer exchange with 0.1% TFA solution. The last method was used as a method of choice for the detailed glycan analysis due to the high efficiency and good repeatability of results (data not shown).

2. 2-AB labelled O-glycan pool

O-glycans were released from the saliva proteins using Luder Liberate™ ORela kit, whereas N-glycans were enzymatically released using P-N-glycosidase F enzyme (PNGase-F). Released glycans were separated from the proteins, then subjected to fluorescent labelling with 2-aminobenzamide (Ludger Tag™-2-AB kit) and subsequently cleaned-up using Luder Clean™-T1 cartridges. High resolution profiles of the saliva glycan pool were obtained by hydrophilic interaction liquid chromatography (HILIC-UPLC).

3. O-glycans detailed structural analysis

Salivary glycans were characterized to obtain O-glycan structures of salivary glycoproteins. The O-glycans were fractionated with weak anion exchange chromatography (WAX-HILIC) and HILIC-UPLC, respectively, and characterised using MALDI-TOF/TOF mass spectrometry. Obtained structures were confirmed with digestions by specific exoglycosidases. Strategy for the analysis of O-glycans is shown in Figure 5.

Conclusions

• We demonstrate an affordable, easy to perform and reliable system for saliva N- and O-glycosylation profiling based on UPLC and MS analysis.

• Our preliminary data suggests that the saliva glycosylation profiles of healthy individuals are relatively constant over several weeks and that the glycan patterns differ between individuals.

• We now plan to expand these studies to include larger cohorts of healthy individuals and patients with chronic diseases (including inflammatory conditions and cancers).

References