

July/August 2025

LudgerSep uR2 UHPLC column

Designed for sialic acid profiling

LudgerTag DMB Sialic Acid Release & Labeling Kit

This kit has been developed for the quantitative analysis of sialic acids and contains all the reagents necessary for the release of sialic acids from glycoproteins and their conjugation with DMB dye by an amination-cyclization reaction. Its larger kit size is ideal for high-throughput automated workflows used for the analysis of biological samples such as blood serum or plasma (see our workflow below).

Preparation*	Release	Labelling	RP-HPLC Analysis		Results
		◆* ◆* ◆* ◆*	Build Add Build Bu		Regulatory compliance during the quality control of biopharmaceuticals:
Sample aliquots in a vacuum-centrifuge for 1-2hrs	LT-KDMB-12 LT-KDMB-A1 LT-KDMB-96 2M acetic acid @80°C for 2hrs	LT-KDMB-12 LT-KDMB-A1 LT-KDMB-96 DMB @50°C for 3hrs	LS-R1-4.6x150 25 μL for 30 min	LS-UR2-2.1x100 5 μL for 15 min	1) Drug safety and efficacy 2) Batch-to-batch consistency
Standards & Controls (run with your samples)					Key Indicators
Fetuin glycoprotein standard GCP-FET-50U-X4		N-acetylneuraminic acid quantitative standards CM-NEU-AC-01 N-glycolyneuraminic acid quantitative standards CM-NEU-GC-01			Neu5AC & Neu5Gc amounts in nmol/mg of protein
A2G2S2 glycopeptide standard BQ-GPEP-A2G2S2-10U		N-acetylneuraminic acid qualitative standard CM-NEU5,9AC2-01 Sialic acid reference panel CM-SRP-01-C			Relative proportions of Neu5,9,Ac2

*Not all sample types require drying (Preparation). E. g. blood plasma and serum samples can be analysed directly.

For more information about this product, please visit our website or contact info@ludger.com.

Ludger at the 16th Jenner Symposium

Ludger was one of the sponsors of the **16th Jenner Glycobiology and Medicine Symposium**, held from <u>11th-13th June 2025 at Maynooth University</u>, Ireland. This global event highlights cutting-edge glycobiology research, with a focus on immunology, infection, cancer, and neurological disorders—areas central to Ludger's mission of advancing glycoscience.

New Study Reveals Glycosylation Extends CHO rVWF Half-Life

Ludger is proud to be at the forefront of glycobiology, providing advanced tools and expert support that drive pioneering research. A recent publication in Blood titled, *"Enhanced a2–3– linked sialylation determines the extended half-life of CHOrVWF"*, was published by Dr. James O'Donnell et al. This research uncovers how specific glycosylation patterns, particularly increased a2,3 sialylation, significantly prolong the half-life of Chinese hamster ovary (CHO) expressed recombinant von Willebrand Factor (rVWF). The research shows that this altered glycosylation reduces β -galactose exposure and clearance via lectin receptors, resulting in enhanced stability and therapeutic potential.

Ludger contributed to this research by providing advanced glycan characterisation through highly sensitive **LC-MS analysi**s, enabling precise **identification of the sialylation linkage differences** crucial to the study's conclusions. Although Ludger did not perform lectin-based assays, our analytical expertise and glycan analysis supplied key structural data that supported the validation of glycosylation's role in improving therapeutic half-life. This collaboration exemplifies how combining academic innovation with industry-leading analytical tools can accelerate the development of more effective biologics.

If you are interested in exploring how Ludger's technologies and expertise can support your glycosylation research or biotherapeutic development, please contact us at **info@ludger.com**. We welcome collaborative partnerships that advance scientific discovery and drive innovation in the biopharmaceutical industry

Ludger was at the 3rd Glycoscience NL Symposium

Ludger was honoured to be a proud sponsor of the **3**rd **Glycoscience NL Symposium**, held on June 27th in Utrecht, <u>Netherlands</u>. This annual event brings together leading experts in glycoscience—including glycobiologists and glyco-chemists—to foster interdisciplinary collaboration and celebrate the diversity of this exciting field.

As part of our sponsorship, Ludger delivered a featured talk, underscoring our ongoing commitment to advancing glycoscience research and its real-world applications.

The day concluded with vibrant networking sessions, strengthening existing partnerships and sparking promising new collaborations.

We remain dedicated to supporting innovation and collaboration in the glycoscience community and look forward to continuing our active engagement in this dynamic scientific arena.

Join our Glycotechnology News Service

